Nanobody-CD16 Catch Bond Reveals NK Cell Mechanosensitivity
نویسندگان
چکیده
منابع مشابه
Catch bond drives stator mechanosensitivity in the bacterial flagellar motor
The bacterial flagellar motor (BFM) is the rotary motor that rotates each bacterial flagellum, powering the swimming and swarming of many motile bacteria. The torque is provided by stator units, ion motive force-powered ion channels known to assemble and disassemble dynamically in the BFM. This turnover is mechanosensitive, with the number of engaged units dependent on the viscous load experien...
متن کاملReduction of the CD16−CD56bright NK Cell Subset Precedes NK Cell Dysfunction in Prostate Cancer
BACKGROUND Natural cytotoxicity, mediated by natural killer (NK) cells plays an important role in the inhibition and elimination of malignant tumor cells. To investigate the immunoregulatory role of NK cells and their potential as diagnostic markers, NK cell activity (NKA) was analyzed in prostate cancer (PCa) patients with particular focus on NK cell subset distribution. METHODS Prospective ...
متن کاملCatch bond interaction between cell-surface sulfatase Sulf1 and glycosaminoglycans.
In biological adhesion, the biophysical mechanism of specific biomolecular interaction can be divided in slip and catch bonds, respectively. Conceptually, slip bonds exhibit a reduced bond lifetime under increased external force and catch bonds, in contrast, exhibit an increased lifetime (for a certain force interval). Since 2003, a handful of biological systems have been identified to display ...
متن کاملAdhesion-dependent cell mechanosensitivity.
The conversion of physical signals, such as contractile forces or external mechanical perturbations, into chemical signaling events is a fundamental cellular process that occurs at cell-extracellular matrix contacts, known as focal adhesions. At these sites, transmembrane integrin receptors are associated via their cytoplasmic domains with the actin cytoskeleton. This interaction with actin is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2019
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2019.03.012